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Abstract

This technical report consists of three short papers on Monte Carlo Markov chain
inference. The first paper, "How many iterations in the Gibbs sampkcr?," propees an
easily implemented method for determining the total number of iterations required to
estimate probabilities and quantiles of the posterior distribution, and also the number
of initial iterations that should be discarded to allow for "burn-in".

The second paper discusses model determination via predictive distributions. The
paper advocates the standard Bayesian procedure that uses Bayes factors, and points
out that this can be implemented quite easily using sampling-based methods.

The third paper discusses issues in spatial statistics that use sampling-based meth-
ods. Several issues in the Bayesian image restoration approach are discussed: the
modeling of spatial dependence, allowing for model uncertainty, the improper poste-
rior distributions that arise in hierarcEcal Bayes modeling, and the modeling of local
dependence between counts when it cannot be assumed that the observations are in-
dependent given the true rates.
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How Many Iterations in the Gibbs Sampler?

Adrian E. Raftery Steven Lewis
University of Washington * University of Washington

April, 1991

Abstract

When the Gibbs sampler is used to estimate posterior distributions (Gelfand and
Smith, 1990), the question of how many iterations are required is central to its imple-
mentation. When interest focuses on quantiles of functionals of the posterior distribu-
tion, we describe an easily-implemented method for determining the total number of
iterations required, and also the number of initial iterations that should be discarded
to allow for "burn-in". The method uses only the Gibbs iterates themselves, and does
not, for example, require external specification of characteristics of the posterior den-
sity. Here the method is described for the situation where one long run is generated,
but it can also be easily applied if there are several runs from different starting points.
It also applies more generally to Markov chain Monte Carlo schemes other than the
Gibbs sampler.

The method is applied to several different posterior distributions. These include
a multivariate normal posterior distribution with independent parameters, a bimodal
distribution, a "cigar-shaped" multivariate normal distribution in ten dimensions, and
a highly complex 190-dimensional posterior distribution arising in spatial statistics. In
each case the method appears to give satisfactory results.

The results suggest that reasonable accuracy may often be achieved with 5,000 it-
erations or less; this can frequently be reduced to less than 1,000 if the posterior tails
are known to be fight. However, there are frequent "exceptions" when the required
number of iterations is much higher. One important such exception is when there are
high posterior correlations between the parameters; even crude correlation-removing
reparameterizations can greatly increase efficiency in such cases. Another important
exception arises in hierarchical models when the Gibbs sampler tends to get "stuck";
there it seems that the use of different Markov chain Monte Carlo schemes may im-
prove matters. The method proposed here seems to diagnose such "exceptions" quite
effectively.

*This research was supported by ONR contract N-00014-88-K-0265 and by a grant from NIH. The authors
are grateful to Jeremy York for providing the data for Examples 4 and 5 and for helping with the analysis.
Code to i+rh-..o.... e, picl'"z tx jLed In this paper may be obtained from Adrian Raftery by e-mail
at rafterypstat. washington. edu.



1 Introduction

The Gibbs sampler was introduced by Geman and Geman (1984) as a way of simulating from

high-dimensional complex distributions arising in image restoration. The method consists

of iteratively simulating from the conditional distribution of one component of the random

vector to be simulated given the current values of the other components. Each complete cycle

through the components of the vector constitutes one step in a Markov chain whose stationary

distribution is, under suitable conditions, the distribution to be simulated. Gelfand and

Smith (1990) pointed out that the algorithm may also be used to simulate from posterior
distributions, and hence may be used to solve standard statistical problems.

The Gibbs sampler can be extremely corputationally demandiug, even for relatively

small-scale statistical problems, and hence it is important to know how many iterations are

required to achieve the desired level of accuracy. Here we describe and investigate a simple

method for doing this, first briefly mentioned in Raftery and Banfield (1991).

We focus on the situation where there is a single long run of the Gibbs sampler, as

practiced by Geman and Geman (1984) and Besag, York and Molli6 (1991), for example.

Gelfand and Smith (1990) have instead adopted the following alogithm: (i) choose a starting

point; (ii) run the Gibbs sampler for T iterations and store only the last iterate; (iii) return
to (i). The choice between the two ways of implementing the algorithm has not been settled,

and was the subject of considerable debate and controversy at the recent Workshop on

Bayesian Computation via Stochastic Simulation in Columbus, Ohio in February, 1991.

Intuitive considerations suggest that one long run may well be more efficient. A heuristic

argument for this might run as follows. Consider the following two ways of obtaining S values

simulated from the posterior distribution. The first way consists of picking off every Tth

value in a single long run of length N - ST. The second way is that of Gelfand and Smith

(1990). In the first way, the starting point for every subsequence of length T is closer to a

draw from the stationary distribution than the corresponding starting point in the second

way, which is chosen by the user. Thus, the first way gives a result which is, at least, no

worse than the secord way. Sometimes, although not always, this may be exploited in the

first way by reducing the value of T, to obtain the same result with less total iterations. A

more formal argument along similar lines was presented by R.L. Smith in the concluding

discussion at the Workshop on Bayesian Computation via Stochastic Simulation.

Gelman and Rubin (1991), on the otner hand, have argued that, even if the one long run

approach may be more efficient, it is still important to use several different starting points.
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The es.ence of their argument is that we cannot know, in the case of any individual problem,
whether a single run has converged, and that combining the results of runs from several

starting points gives an honest, if conservative, assessment of the underlying uncertainty.

They illustrate their argument by showing that in the Ising model convergence can be quite

slow. This example refers to the 10,000-dimensional binary state-space {-- 1, 1} 10,000, and

is thus untypical of the parameter spaces that arise in typical statistical problems, but it

should nevertheless be taken seriously. Here we suggest that combining internal information

from a partial run with properties of Markov chains may provide an alternative way of

solving the problem, without sacrificing the appealing simplicity of using a single long run.

In particular, Markov chain theory provides results not just about ergodicity, but also about

the (geometric) rate of convergence to the stationary distribution, and the distribntion of

sample means. However, the method can easily be used when there are several runs from

different starting points.

2 The Method

We consider the specific problem of calculating particular quantiles of the posterior distribu-

tion of a function U of the parameter 9. We formulate the problem as follows. Suppose that

we want to estimate P[U < u I y] to within ±r with probability s, where U is a function of

0. We will find the approximate number of iterations required to do this when the correct

answer is q. For example, if q = .025, r = .005 and s = .95, this corresponds to requiring that

the cumulative distribution function of the .025 quantile be estimated to within ±.005 with

probability .95. This might be a reasonable requirement if, roughly speaking, we wanted

reported 95% intervals to have actual posterior probability between .94 and .96. We run the

Gibbs sampler for an initial M iterations that we discard, and then for a further N iterations

of which we store every kth. Typical choices in the literature are M = 1,000, N = 10,000

and k = 10 or 20 (Besag, York and Molli6 1991). Our problem is to determine M, N, and k.

Note that when k > 1, we may still store and usc all the N iterates, and the solution given

here is then conservative.

We first calculate Ut for each iteration t. and then form Zt = 6(Ut u), where 6(-) is

the indi.,,.or itunction. {Z,} is a binary 0-1 process that is derived from a Markov chain

17.' marginalization And tr':atI.. .,t ;t i not ;+,,-f , Markov chain. Nverthelo5- it

seems reasonable to suppose that the dependence in {Zt} falls off fairly rapidly with lag,

and hence that if we form the new process {Z~k)}, where Z ) = Z+(,-.)k, then {Z(k) } will
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be approximately a Markov chain for k sufficiently large.

No formal proof of this is presented here, but it does seem intuitively plausible. Here

a data-based method, described below, is used to assess whether the assumption provides

a reasonable approximation for the case at hand. A proof might go something as follows.

The process { Zt} ib ergodic and, if the underlying Markov chain is 0-mixing in the sense of

Biilingsley (1968), which will often be a direct consequence of the construction, then {Zt

is also 0-mixing with the same rate. Thus the maximum difference between P[Zk) io

Zt-) = i1 , a= --- = )i eventually declines exponentially as a function

of k, and so {Z} is arbitrarily close to being a first-order Markov chain in that sense, for
k sufficiently large.

In what follows, we draw on standard results for two-state Markov chains; see, for ex-

ample, Cox and Miller (1965). Assuming that {Z~k)} is indeed a Markov chain, we now

determine M = ink, the number of "burn-in" iterations, to be discarded. Let

Pa

be the transition matrix for {Z~k)}. The equilibrium distribution is then 7r = (7,io,) =

(a + /)-(3,a), and the e-step transition matrix is

pt = ( ro 7i +-

where A = (1-a /3). Suppose that we require that P[Z ) = i[ Z( ) =j] be within c ofi r,

for i,j = 0,1. If eo = (1,0) and e= (0,1), then P[Z (k =) -= J = eP m , and so the

requirement becomes

max(a, p)'

which holds when
mm log ( .)

log A

Thus M m*k.

To detei mine N, we note that the estimate of P[U < u I D] is (k)= Zk). For

n large, -Z(k) is approximately normally distributed with mean q and variance .13(2-o-0)n-, n (,+0i)3

Thus the requirement that P[q - r < k) < q + r] = s will be satisfied if

n n T- n* 3()=

{ $(0 +'))
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where '1(.) is the standard normal cumulative distribution function. Thus we have N = kn*.

To determine k, we form the series { Z~k)} for k = 1, 2, ... For each k, we compare the

first-order Markov chain model with the second-order Markov chain model, and choose the

smallest value of k for which the first-order model is preferred. We compare the models by

nrst recasting them a- (,Iospd-form) log-linear models for a 23 table (Bishop, Fienberg and

Holland, 1975), and then using the BIC criterion, G' -2 log n, where .I is the likelihood ratio

test statistic. This was introduced by Schwarz (1978) in another context and generalized to

log-linear models by Raftery (1986); it provides an approximation to twice the logarithm of

the Bayes factor for the second-order model. One could also use a non-Bayesian test, but

the choice of significance level is problemmatic in the presence of large samples of the size

that arise routinely with the Gibbs sampler.

To implement the method, we run the sampler for an initial nnmber of iterations, N,,n,

and use this run to determine the number of additional runs required, as above. The proce-

dure can be iterated, in that once the indicated number of iterations has been run, we may

apply the method again to the entire run, reestimating a and fl to determine more precibeiy

if the number of iteraticmns produced was in fact adequate. To determine Nn.n, we note that

the required N will be minimized if successive values of { Zt} are independent, in which case

M = 0, k = 1 and

N = Ni -' ( (1l + s)) 2 q(1 - q)/r 2 .

For example, when q = .025, r = .005 and s = .95, we have Nmi. = 3,748.

We also note that the user is not required to use only every kth iterate; if all the iterates

are used the method proposed here will be conservative in the sense of possibly overestimating

the number of iterations required. On the other hand, in the majority of cases that we have

examined, the preferred value of k was, in fact, 1. Also, storage considerations often point

to the desirability of storing only a portion of the iterates if this is reasonable.

The user needs to give only the required precision, as specified by the four quantities q,

r, s and e. Of these, the result is by far the most sensitive to r, since N ox r -2 . It may

often be more natural to specify the required precision in terms of the error in the estimate

of a quantile rather than the error in the cumulative distribution function at the quantile,

which is what r refers to. In order to see how r relates to accuracy on the former scale, we

have shown in Table 1 the approximate maximum percentage error in the estimated quantile

corresponding to a range of values of r, for q = .025. This is defined as 100 max{ F-'+) - 1 },
F-1 (q)

and is shown for three distributions: normal (light-tailed), t4 (moderate tails), and Cauchy
(heavy-tailed).
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Table 1: Maximum percent error in the estimated .025 quantile

r Nma. Percent error
(s=.95) N(0,1) t4  Cauchy

.0025 14982 2 4 11
.005 3748 5 8 25
.0075 1665 8 13 43

.01 936 11 19 67
.0125 600 14 26 101
.015 416 19 37 150

.02 234 31 65 402

Suppose we regard a 14% error as acceptable, corresponding to an estimated .975 quantile

of up to 2.24 in the normal distribution, compared with the true value of 1.96. Then, if we

knew p(U I y) to have light, normal-like, tails, Table 1 suggests that r = .0125 would be

sufficiently small. However, with the heavier-tailed t4 distribution, r = .0075 is required

to achieve the same accuracy, while for the very heavy-tailed Cauchy, r = .003 is required,

corresponding to Nmi ' 10, 000.

This suggests that if we are not sure in advance how heavy the posterior tail is, r = .005

is a reasonably safe choice (even for the Cauchy it is not catastrophic). It also suggests that

the present method could be refined by using the initial set of Gibbs iterates to estimate

the asymptotic rate of decay of the posterior tail nonparametrically with methods such as

those of Hall (1982), and then choosing r in light of the estimate, perhaps by referring to a

t-distribution with the appropriate degrees of freedom. At first sight it might appear that a

component-wise reparametrization to lighten the tails would be a good remedy. However, we

suspect that this would not be a real solution, and that the problem would reappear when

the results were transformed back to the scale on which the quantity of actual interest is

measured.

3 Examples

We now apply the method to several examples, both simulated and real. In each case, we
.4

give the results only for q = .025, r = .005, s = .95 and e = .001. The results are shown

in Table 2 for all the examples. The value in the column headed F(F-'(.025)) should b,

between .02 and .03 for this specification. Results for other quanTiles and other accuicy
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Table 2: Results for the fi;e examples

Example M k N F(F-'(.025))
1. Indep. normal pars. 3 1 3,914 .023
2. Bimodal 4 1 4,256 .028
3. Cigar 36 3 26,916 .025
4. Spatial ul 3 1 4,052 .024
5. Spatial smoothness 40 2 24,346 -

requirements, not shown here, were qualitatively similar.

Example 1: Multivariate normal distribution with independent parameters

In this simulated example the method gave k = 1, a very small number of burn-in iterations

(M = 3), and a value of N which is only slightly larger than the theoretical minimum (3,914

as against 3,748). Also, the result is within the specified bounds. While this is very much

as one would expect, it is also a reassuring check on the performance of the method.

Example 2: A bimodal posterior distribution

Here we simulated, using the Gibbs sampler, from a mixture of two bivariate normal distri-

butions, namely

-BVN(Mi,,E) + BVN(I2,E),

where y, = (1,l 1)T, J 2 )(1 ,0) and

E 9 1 "

The joint distribution is quite strongly bimodal, although the marginal distributions of the

two components are not. The first 1,000 simulated values of the second component are shown

in Figure 1. The result is surprisingly similar to that in Example 1. Again, k = 1, the amount

of burn-in is negligible (M = 4), and N = 4,256 is not much larger than the theoretical

minimum. The Gibbs iterates are slightly more highly correlated than in Example 1, and
the value of N can be regarded as an index of this. Once again, the result is within the

specified bounds.
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Example 3: A cigar in ten dimensions

In order to investigate the effect of high posterior correlations between parameters, we used
the Gibbs sampler to simulate from a 10-dimensional multivariate normal posterior distribu-

tion where each component had zero mean and unit variance, and all the pairwise correlations

were equal to .9. This is a highly correlated distribution, where the first principal component

(proportional to the mean of the parameters) accounts for 91% of the variance; the posterior

distribution is concentrated about a thin "cigar" in 10-space. Note that this is a very poor
parameterization for the Gibbs sampler.

The first 1,000 simulated values of the first parameter are shown in Figure 2. The results

of applying the method are strikingly different from what we saw before. The amount of
burn-in is no longer negligible, although it is not huge (M = 36). The dependency structure

of the binary sequence is more complicated than before, leading to k = 3, and the level of

dependency is high, so that the required N is very large, at 26,916. After that number of

iterations, the result was accurate. This phenomenon seems to be due to the high level of

dependency in the sequence, and not primarily to the sampler being slow to converge to the

desired distribution.

It is of interest to consider the situation after 6,700 iterations; this is a large number, but

substantially less than the prescribed 27,000. By that point, diagnostics based on changes

in cumulative estimates suggest the Gibbs sampler to have converged. However, after 6,700

iterations, 1 -/P(F-1(.975)) = .045, compared to the true value of .025, which is well outside

the prescribed tolerance, and the empirical .975 quantile was 2.22 instead of 1.96. However,

the present method indicated clearly that the number of iterations was insufficient to achieve

the desired accuracy.

This example also illustrates the impor6ance of parameterization for the Gibbs sampler

(see also Wakefield, 1991). A parameterization that leads to a highly correlated posterior

distribution like the one considered in this example is a very poor one for the Gibbs sam-

pler, and leads to considerable inefficiency. It seems likely that even a very simple linear

reparameterization would lead to at least a five-fold reduction in the required number of

iterations.

Example 4: An 190-dimensional posterior distribution from spatial statistics

Besag, York and Molli6 (1991) considered the problem of mapping the risk from a disease

given incidence data. Let z, denote the unknown log relative risk in zone i and y, the
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corresponding observed number of cases. They assumed yi to have a Poisson distribution

with mean cex- , where ci is the expected number assuming constant risk. They let xi = ui+vi

where the ui have substantial spatial structure represented by the joint density

AuIK X exp D, j)

where i j denotes the fact that zones i and j are contiguous and r is a spa+ial smoothness

parameter. The vi are assumed to be generated by GaL.sian while noise with parameter A.

The main aim is to find the posterior distribution of zi, but other features of the underlying

mechanism may also be of interest.

Here we show only the result for u, for thyroid cancer deaths in 94 departements of

France; the results for the other ui and for the vi are similar. 'he Gibbs sampler here

involves 190 parameters: the 94 uj's, the 94 vi's, r, and A. The first 1,000 iterations are

shown in Figure 3. The result is very similar to that for Examples I and 2. The number in

the last column was obtained by running the Gibbs sampler for a total of 11,000 iterations,

and treating the value obtained from this complete run as the "true" value.

Example 5: The spatial smoothr'ess parameter

We now consider separately the spatial smoothness parameter K from Example 4. The first

1,000 Gibbs iterations are shown in Figure 4. The results are quite different from those

for u, and are somewhat similar to those for Example 3. The dependency structure in the

induced binary sequence is complex, leading to k = 2, and the dependency is high, leading to

N = 24,346. The amount of burn-in, however, while not negligible, is fairly small (Al = 40).

It was not feasible to determine the correct answer in this case.

While the difficulty with Example 3 could probably be resolved by appropriate reparam-

eterization, the problem here seems more fundamental. Here the problem is due to the fact

that r. sometimes gets "stuck" close to zero for several hundred iterations at a time. This is

because having the ui close together (i.e. high spatial smoothness) makes a small value of K

likely, while a small value of r. forces the ui to be close together. Thus the Gibbs samp,-

gets caught periodically in a "vicious circle"; to escape it requires a rare event. The solution

here may be the use of a different variation on Metropo,: 'ynamics than the Gibbs sampler,
perhaps involving simultaneous updating of some kind. This kind of problem seems likely

to arise often in hierarchical models more generally. Note that the present method for de-

termining the number of iterations would carry over to other forms of Metropolis dynamics.
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4 Discussion

We havc proposed a method for determining how many iterations are necessary in the Gibbs

sampler. This is easy to implement and does not require anything beyond an initial run from
the sampler itself. It appears to give encouraging results in several examples. However, much

more thorough investigation is required for various kinds of difficult posterior distributions.
For "nice" posterior distributions, the exaraples suggest that accuracy at the level speci-

fied for illustration in this paper can be achieved by running the sampler for 5,000 iterations

and using all the iterates. However, when the posterior is not "nice", the required number
can be very much greater. Example 3 suggests that poor parameterization can be one reason

for massive inefficiency of the Gibbs sampler, and that even simple-minded reparameteri-

zation may have the potential to lead to substantial savings. Problems may also arise in

hierarchical models where the Gibbs sampler sometimes has a tendency to get "stuck"; this

is illustrated in Example 5.
Our experience suggests that the present method diagnoses such problems fairly well.

When the prescribed number of iterations is much larger than N,,, there seem to be two
ways to proceed. One is simply to run the sampler for the specified number of iterations; this

seems the best course when iterates are computationally inexpensive. Otherwise it may well

be worthwhile to reparameterize or to use a. different Markov chain Monte Carlo scheme.

It has been common practice when running the Gibbs sampler to throw away a substantial

number of initial iterations, often on the order of 1,000. ( ir results here suggest that
this may not usually be necessary, and indeed, will often be quite wasteful. This is not
too surprising given the geometric rate of convergence of Markov chains to the stationary

distribution. When large numbers of iterations were required, this was due to the high level
of dependence between successive iterates rather than to the failure of the Gibbs sampler to

converge initially.

Thus, we suspect that, for typical statistical problems, the uncertainty due to the initial
starting point that Gelman and Rubin (1991) capture with their methods will be a relatively

small part of the overall uncertainty if the numbe- of Gibbs iterations is realisticall:' large. Of

course, we are fir from having established that conclusively here, and diagnostic checks such

as those proposed by Gelman and Rubin (1991) remain important. Indeed, our method and
theirs may be regarded as complementary in that our method can be viewed as determining

the total number of iterations required, which will typically be Yttle changed whether there

is one long run or a small number of shorter runs from differ, nt starting points. More
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specifically, if there are to be R different runs from different starting values, then each

run should have NR - 1 + M iterations, of which the first M are discarded. Thus the two

methods could be synthesized by using our approach to determinc the total number of

required iterations, and using the method of Gelman and Rubin (1991), both as a further

check for convergence, and also to incorporate uncertainty about the starting point.

It has also been common practice to use only every 10th or 20th iterate and to discard

the rest. The results here also suggest that in many cases this is rather prolifigate. Indeed,

in the "nice" cases, the dependency between successive iterates is weak and it makes sense

to use them all, even when storage is an issue.

An alternative approach to determining the number of iterations starts by viewing the

sequence of Gibbs iterates as a standard time series (e.g. Geyer, 1991; Geweke, 1991; Hills

and Smith, 1991). If the quantity of interest is the mean of a function of the series, then the

variance of such a mean is equal to the spectrum of the corresponding series at zero, which

can be estimated using standard spectral methods. This requires the user to specify both a

spectral window and a window width, and the estimate of the spectrum at zero can be quite

sensitive to these choices.

Obtaining posterior quantiles defining Bayesian confidence intervals is often a key goal

of an analysis. When this is the case, the present method exploits the natural simplification

that arises from the implied dichotomization. Thus it avoids the need to specify quantities

other than the required precision (such as spectral window widths), it yields a simple estimate

of the number of "burn-in" estimations, and it provides a practical lower bound, Nin, on

the number of iterations that is known before the Gibbs sampler starts running.

It may be argued that often all that is required is a posterior mean and standard deviation,

and that these are not quantiles. If this is indeed the case, and there is really no interest

in the shape of the posterior distribution, then there may well be little point in running the

Gibbs sampler at all, as cheaper methods are frequently available for posterior means and

standard deviations. However, the posterior mean and standard deviation are often used to

provide a summary of the posterior distribution. In that case, a robust measure location,

such as the median, may be preferable to the posterior mean as a descriptive measure, and

the median is a quantile. Also, the posterior standard deviation is often used as a way of

obtaining an approximate confidence interval, say by taking the posterior mean plus or minus

two posterior standard deviations. However, if a sample from the posterior is available, it

seems worth calculating the required interval directly-again this will be defined by quantiles.

Even if a single measure of posterior dispersion is required, it may well be better to use a
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more robust measure than the posterior stc.dard deviation, such as a scaled version of the

inter-quartile range; again this is defined by quantiles. Thus, appropriate summaries of the

posterior distribution are often defined in terms of quantiles, even when at first sight it seems

that a mean-like quantity is required.

One important message is that the required number of iterations can be dramatically

different for different problems, and even for different quantities of interest within the same

problem. Thus, it seems unwise to rely on a single "rule of thumb", and it would seem to

be importaat to use some method, such as the one proposed here, to determine the number

of iterations thaL are needed for the problem at hand.
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Figure 1 - Bimodal example
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Figure 3 - Spatial example: ul
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Discussion of "Model determination using
predictive distributions with implementations via

sampling-based methods", by A.E.Gelfand,
D.K.Dey and H.Chang

Adrian E. Raftery
University of Washington

May 28, 1991

1 Introduction and summary

It is a pleasure to congratulate the authors on an interesting and important paper that

points out how sampling-based methods can make Bayesian diagnostics for model checking

routinely available. Bayesian diagnostics are often similar to frequentist ones, but they have

the great advantage of being systemmatically available through the predictive distribution,

even for complex models. This is in contrast with frequentist diagnostics, which have to be

developed from scratch for each new class of models, often requiring considerable ingenuity.

The interpretation of Bayesian diagnostics is somewhat glossed over by the authors, however.

We part company to some extent on the issue of model choice. I am unconvinced by

the arguments against the standard Bayesian procedure, namely that based on posterior

model probabilities. New results indicate that posterior model probabilities can be readily

computed using sampling-based methods. Also, the standard Bayesian procedure is based

on predictive distributions, in a prequential rather than a cross-validation sense.

2 Bayesian diagnostics for model checking

A real achievement of this paper is to show how sampling-based methods can be used to

obtain Bayesian diagnostics systemmatically and routinely for a very wide class of models.

When frequentist diagnostics are available they are often similar to Bayesian diagnostics. The



great advantage of Bayesian diagnostics is that they are available quite generally from the

predictive distribution, unlike their frequentist counterparts, which can require considerable

ingenuity for each new class of models.

The authors have. however, rather glossed over the interpretation of their diagnostics.

For example, in the tionlinear regression example, they conclude that points 11 and 14 are

troublesome but that, all told, both models provide an adequate fit. What is the basis for

this cc aclusion? Nothing is suggested beyond eyeballing the results, but there are certainly

more I recise criteria implicitly at work here, and they should be made explicit.

I would suggest that diagnostics not be used to reject the current model, but rather

to guide the search for better models by indicating the direction of search, or the way in
which the current model is inadequate. If this leads to the specification of an alternative

model, then the current model can be compared with alternative one using the posterior

odds ratio (or posterior expected utilities if these can be specified); the current model will

not be rejected unless the alternative one is decisively preferred. You don't abandon a model

unless you have a better one in hand.

Even viewing diagnostics this way, as an exploratory tool rather than as a basis for

inference, we still need some yardstick to calibrate our inspection of the results. Here it does

seem that frequentist calculations are useful, and I suspect that such calculations implicitly

underly the authors' interpretation of the results in their Table 2.

3 Model comparison: In support of the standard Bayesian
procedure

The standard Bayesian pr,,cedure is given by the authors' equation (3), and amounts to

basing inference on the posterior model probabilities. They raise two objections to this

procedure, which I will now briefly discuss.

3.1 "Bartlett's paradox"

This is the observation due to Bartlett (1957) that if under M1 the Y are iid N(O, 1), and

under M, they are iid N(O, 1) with 0 -, N(0, r2 ), then p(M I Y) -* 1 as r' -+ oc regardless

of the data; see the authors' section 2.3.1.

This has been presented by the authors and by others that they cite as a major flaw

of the standard Bayesian approach, but I do not find it too disquieting. Letting r 2 c o0

implies that E[8lI also becomes arbitrarily large, so it is not too surprising that, for any
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data set, E[10I] can be set large enough that the data prefer zero. Some prior information

is almost always available that will limit the prior variance r2, and it is always important

to investigate the sensitivity of p(Mi I Y) to changes in r2 . In practice, p(M I Y) tends

to be rather insensitive to changes in r 2 over a wide range (see, e.g., Raftery, 1988). Thus,

Bartlett's paradox seems to me to suggest that the use of highly diffuse priors is not a good

idea for model comparison.

It may be objected that it is desirable to have a "reference" procedure for model compari-

son. However, in my applied experience, reasonable proper priors are often readily accepted,

especially when backed up with a serious sensitivity analysis; the likelihood is often the more

controversial part of the analysis.

3.2 The more serious criticism

The authors write:

"A more serious criticism is that, in doing practical model fitting, we doubt that

anyone including Bayesians would select models in this fashion [i.e. using the

standard Bayesian procedure - AER.) One doesn't really believe that any of the

proposed models are correct whence attaching a prior probability to an individ-

ual model's correctness seems silly. Moreover the selection process is typically

evolutionary. Initially a few models (sometimes, in fact, a single one) are con-

sidered. These are examined and modified with comparisons often made in pairs

until a satisfactory (in terms of both parsimony and performance) but one would

certainly not say 'best' choice is made."

Attaching a prior probability to a model is not any sillier than science as traditionally

practiced. Most of science is an attempt to find a model that predicts the observations to

date well; it does not claim to have found the "truth" (if such a thing exists) or the "correct

model". Science typically proceeds by adopting a paradigm, which means essentially condi-

tioning on a collection of models, often with an explicit parametric form. Prior probabilities

conditional on the adopted paradigm, or collection of models, do make sense.

Of course, if one does not so condition, the prior probability, and hence also the posterior
probability of most models is zero. Since one does not believe the paradigm to be the "truth",
this may make science as a whole seem silly, but its record of success argues in its favor. Note

that the marginal likelihood, f(Y I Mj), which is proportional to the posterior probability
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of Mj, is just the (predictive) probability of the data given the model M,, and so is precisely

the right quantity for evaluating the scientific theory defined by Mj.

Consider, for example, the question of whether smoking causes lung cancer, and suppose

that the currently accepted way of addressing this issue is within the framework of the logistic

regression model, logit(Pr[lung cancer]) = -yl[smokes] + iTX, where x is a vector of control

variables. Conditionally on this framework (or "paradigm"), the issue becomes a comparison

of the two models M1 : - = 0 and M 2 : - > 0. Then a scientist's natural language statement

"I am 90% sure that smoking causes lung cancer" is equivalent, given the framework, to

the statement that p(M1 ) = 0.1 and p(M2 ) = 0.9. This does seem to make sense even if,

unconditionally on the framework, p(Mi) = p(M 2 ) = 0.

Of course, the natural language statement itself can be viewed as not being about "truth",

but rather about future data and trends in scientific opinion. It might mean, for example, "I

am 90% sure that future data will be better predicted by M 2 than by MI", or "I am 90% sure

that within T years the belief that smoking causes lung cancer will be generally accepted";

note that the latter two statements can be given standard betting interpretations. For an

example where scientists might attach substantial prior probability to the smaller ("null")

model, consider cold fusion.

The authors describe the standard Bayesian procedure as a model selection procedure,

but it is considerably richer than that. When comparing two models that genuinely represent

rival scientific hypotheses, the posterior odds ratio provides a summary of the evidence for

one model against the other; unless the evidence is very strong, one model will not necessarily

be selected.

Often, however, model form is not the object of primary scientific interest. The authors

did not say what the main scientific question was in their growth curve example, but I suspect

that it was not the choice between the two models that they considered. If interest focuses

instead on some other quantity, A, such as the next observation, Y16 , or the asymptote,

1%, then model selection is a false problem, and it is important to take account of model

uncertainty. The Bayesian approach provides an immediate way of doing this using the

equation
J

p(AI Y) = p(A I Y, Mj)p(M, I Y). (1)
j=1

Hodges (1987) emphasized the importance of taking account of model uncertainty, pointing

out that failure to do so leads to the overall uncertainty being underestimated, and hence,

for example, to overly risky decisions.
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If the posterior probability of one of the models is close to unity, or if the posterior

distribution of A is almost the same for the models that account for most of the posterior

probability, then p(A I Y) may be approximated by conditioning on a single model, namely

by p(A I Y, Mj) for some i. This seems to be the main situation in which model selection,

as such, is a valid exercise. The "evolutionary" process to which the authors refer is in

reality an informal search method for finding the main models that contribute to the sum

in equation (1), and in this sense may be viewed as an approximation to the full (standard)

Bayesian procedure. Clearer recognition of this might lead to more satisfactory model search

strategies.

4 The standard Bayesian procedure and sampling-

based methods

The key quantity for the implementation of the standard Bayesian procedure is the marginal

likelihood, f(Y I Mj) = f f(Y I Oj,X, Mj)?r(Oj)dO. The authors say that the Gibbs sam-

pler does not readily produce an estimator of f(Y I M2 ). However, Newton and Raftery

(1991) have recently pointed out the existence of a simple and general such estimator. They

show that, given a sample from the posterior, the marginal likelihood may be (simulation-

consistently) estimated by the harmonic mean of the associated likelihood values. This result

applies no matter how the sample was obtained, whether directly using the analytic form

of the posterior, by importance sampling, the Gibbs sampler, the SIR algorithm or the

weighted likelihood bootstrap. There can be stability problems with this estimator, and

slight modifications that avoid these are discussed in the cited reference.

The standard Bayesian procedure is a predictive approach since the marginal likelihood

can be written n

f(Y I Mj) = I f(Y, I Yr-',M), (2)
r=1

where yr-1 = (Y 1,... , Y,-). Note that the conditional densities on the right-hand side

of equation (2) are conditional on the first (r - 1) observations, and not on all the other

(n - 1) observations. Thus the standard Bayesian procedure is a "prequential" method in the

sense of Dawid (1984), and not a cross-validation approach. Each conditional density on the

right-hand side of equation (2) may be evaluated in a sampling-based way, using the same

methods as the authors propose for their d4,. It follows that this provides an alternative

sampling-based way of calculating the marginal likelihood, and hence of implementing the

standard Bayesian procedure.
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Note also that equation (2) remains valid even if the observations are permuted. Thus,
even if the model does not impose a natural ordering on the observations, "prequential

diagnostics" may be obtained by sampling from the set of all permutations of the observations
and averaging over diagnostics based on the conditional densities on the right-hand side of

equation (2).

If one replaces the conditional densities on the right-hand side of equation (2) by densities
conditional on all the observations except the rth one, one obtains the quantity that the

authors denote by D4 = [I'IL1 d47 . This could be called a "pseudo-marginal likelihood", by

analogy with the pseudo-likelihood concept introduced by Besag (1975). Using D4 rather

than f(Y I Mi) is similar to using the pseudo-likelihood rather than the likelihood when

the latter is available, which does not seem to be a very good choice. As an argument in

favor of D4 , however, the authors point out that with improper priors D4 is defined whereas

f(Y I Alj) is not. This strikes me as a disadvantage of improper priors rather than of the

standard marginal likelihood.

I will attempt to summarize the various analogies and equivalences discussed in the

following table.

Prequential analysis Cross-validation
Likelihood Pseudo-likelihood
Marginal likelihood "Pseudo-marginal
(f(Y IMj)) likelihood" (D4)
Posterior model probability/ Fixed-level significance
Bayes factor test
BIC (Schwarz, 1978) AIC, CP

Entries in the same column are regarded as being related, either by being motivated
by the same approach or by being asymptotically equivalent. Entires in the same row are

viewed as different approaches to the same task or concept. I prefer the entries in the left-

hand column, headed "prequential analysis", while the authors seem to incline to the entries

in the right-hand column. Note that the difference can be important, especially with large

samples.
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Stopping the Gibbs Sampler, the Use of
Morphology, and Other Issues in Spatial Statistics

Adrian E. Raftery Jeffrey D. Banfield
University of Washington * Montana State University

December 5, 1990

1 Introduction

It is a pleasure to congratulate Julian Besag, Jeremy York and Annie Molli on a superb

paper that will surely take its place as yet another of Julian Besag's greatest hits, and as a

first hit for the other two authors!

They argue that many spatial statistics problems can appropriately be viewed as problems

in image restoration, and that image restoration problems are best solved by postulating a

Markov Random Field model, and then calculating the posterior distribution of the quantities

of interest using the Gibbs sampler. This is an appealing argument and the examples are

encouraging. One possible difficulty arises from the fact that the models may not have

the same large-scale properties as the data they are used to analyze, and this raises some

questions about the status of the resulting inferences: see section 3 below.

For the practical implementation of the Bayesian image restoration approach it is im-

portant to know how many iterations of the Gibbs sampler are required, and we propose

*Adrian E. Raftery is Professor of Statistics and of Sociology. GN-22, University of Washington, Seattle,
WA 98195. Jeffrey D. Banfield is Assistant Professor, Department of Mathematical Sciences, Montana
State University, Bozeman, MT 59717. This research was supported by the Office of Naval Research under
Contracts N-00014-88-K-0265 and N-00014-89-J-1114. The authors are grateful to Julian Besag and Jeremy
York for helpful discussions, and also to Jeremy York for computational assistance. Of course, the usual
discla, imer applies, as they will be able to make clear in their rejoinder!
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a method for determining this in section 2. In section 3 we consider all alternative to

the Bayesian image restoration approach for the archeology -xample, based on nathemat-

ical morphology. In section 4 we discuss several issues in the modeling that underlies the

Bayesian image restoration approach: the modeling of spatial dependence, allowing for model

uncertainty, the improper posterior distributions that arise in hierarchical Bayes modeling,

and the modeling of local dependence between counts when it cannot be assumed that the

y,'s are independent given x.

2 How many iterations in the Gibbs sampler?

The authors point out that the Bayesian image restoration approach is not yet feasible for

typical images containing 10' or 106 pixels, although it can be implemented for the pioblems

they consider, involving 100-300 "pixels". The main reason for this is the large number

of iterations required by the Gibbs sampler. For instance, in the disease risk example, tile

authors ran the Gibbs sampler for 11,000 iterations, discaiding the first 1,000, and storing

every 10th or 20th value thereafter; these numbers were fairly arbitrarily picked initially,

although they appeared to give reasonable results. As a practical matter, iU would seem

desirable to run the Gibbs sampler for the smallest number of iterations necessary to attain

a required level of accuracy, and we now outline an approximate way of determining what

that is.

The validity of the Gibbs sampler stems from the fact that each cycle of the algorithm

correspc nds to one step of a Markov chain with stationary transition probabilities and that

an ergodic theorem applies for functions of x under certain regularity conditions (Geman and

Geman, 1984). This suggests that one generate a single long realization of the Markov chain

and Ibase inference oil it, which is what the authors have done. By contrast, several authors

who have recently applied the Gibbs sampler to more standard statistical problems (Gelfand

and Smith, 1990; Glfand, Hills, Racine-Poon and Smith, 1989) have instead adopted the
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following algorithm: (i) choose a starting point; (ii) run the Gibbs sampler for T iterations

and store only the last iterate; (iii) return to (i). The relationship of this latter algorithm to

the underlying theory seems problcmmatical, and here we consider only the case of a single

long realization.

We consider the specific problem of producing results such as those in the authors' Figures

7 and 8, namely the calculation of particular quantiles of the posterior distribution of a

function of x. We formulate the problem as follows. Suppose that we want to estimate

P[U < u I y] to within ±r with probability s, where U is a function of x. We will find

the approximate number of iterations required to do this when the correct answer is q. For

example, if q = .025, r = .005 and s = .95, this corresponds to requiring that the cumulative

distribution function of the .025 quantile be estimated to within ±.005 with probability

.95. This might be a reasonable requirement if, roughly speaking, we wanted reported 95%

intervals to have actual posterior probability between .94 and .96. We run the Gibbs sampler

for an initial M iterations that we discard, and then for a further N iterations of which we

store every kth (in their section 4 the authors use M = 1,000, N = 10,000 and k = 10 or

20) Our problem is to determine M, N, and k.

We first calculate U, for each iteration t, and then form Zt = 6(Ut > u), where 6(-) is

the indicator function. {Z,} ;s a binary 0-1 process that is derived from a Markov chain

by marginalization and truncation, but it is not itself a Markov chain. Nevertheless, it

seems reasonable to suppose that the dependence in { Zt } falls off fairly rapidly with lag, and

hence that if we form the new process {Ztk)}, where Zt = Z,+(t_)k, then {Ztk)} will be

approximately a Markov chain for k sufficiently large. In what follows, we draw on standard

results for two-state Markov chains; see, for example, Cox and Miller (1965).

Assuming that {Z~k)} is indeed a Markov chain, we now determine M = ink, the number
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of "burn-in" iterations, to be discarded. Let

P(1a a)

be the transition matrix for {Zk)}. The equilibrium distribution is then 7r = (7ro, 7r) 

(a + f)- 1 (/8, a), and the t-step transition matrix is

pt = ro 7ri + A' a -
7to 7rj a'/ --+

where A = (I - a -,6). Suppose that we require that P[Z.) = iZo(k)  j] be within E of r,

for i,j = 0,1. If e0 = (1,0) and ei = (0,1), then P[Z k ) -k) j] = eP", and so the

requirement becomes

Am  <e(a +f
max(a,fl)'

which holds when
log

Mn = rn* --= a~~l
log A

Thus M = m*k.

To determine N, we note that the estimate of P[U < u I D] is k) = I = Z k). For

n large, Zk) is approximately normally distributed with mean q and variance . z(2-o-0)

Thus the requirement that P[q - r < 7 (k) <q+ = s will be satisfied if

n n* 2 (_ +_) _

where 4 (.) is the standard normal cumulative distribution function. Thus we have N = kn*.

To determine k, we form the series {Zk)} for k = 1,2, ... For each k, we compare th~e

first-order Markov chain model with the second-order Markov chain model, and choose the

smallest value of k for which the first-order model is preferred. We compare the models by

first recasting them as (closed-form) log-linear models tor a 2' table (Bishop, Fienberg and

Holland, 1975), and then using the BIC criterion, G2 -2 log n, where G2 is the likelihood ratio
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test statistic. This was introduced by Schwarz (1978) in another context and generalized to

log-linear models by Raftery (1986); it provides an approximation to twice the logarithm of

the Bayes factor for the second-order model. One could also use a non-Bayesian test, but

the choice of significance level is problematic in the presence of large samples.

We applied the suggested method to series of 11,000 iterations of the Gibbs sampler for

u and v for each of 12 d6partements based on the data of the authors' Figure 4; the Gibbs

sampler output was kindly supplied to us by Jeremy York. We first give illustrative results

with q = .025, r = .005, s = .95, and e = .001. For all 24 parameters considered, k was

either 1 or 2, M was never more than 6, and N was always 9,034 or less. However, for the

spatial smoothness parameter K, the situation was quite different and the requirements of

the Gibbs sampler were larger: k = 5, M = 65 and N = 42,500.

The authors' Figure 6 implicitly requires that the .1 quantile of e' = e'+' be correct to

one decimal place with high probability. This implies, approximately, that for each u and v

we specify q = .1, r = .012 and s = .95, which yielded k < 3, M < 12 and N < 8,300 for all

24 parameters considered. In practice, the method would be implemented by first running,

say, 1,000 iterations and then deciding on k, M and N on the basis of those. In the present

case, this appeared to work quite well.

One conclusion is that the number of iterations required can vary considerably depending

on what is being estimated. Here, far more iterations are required for the overall spatial

smoothness parameter r than for the relative risk at an individual node. It does not seem

necessary to use only every 10th or 20th iterate, and, indeed, doing so is probably quite

wasteful. Indeed, it is not clear that discarding any iterates is advantageous, although it

does simplify the calculations here. Also, it does not seem necessary to discard the first

1,000 iterates, or anything like it; our calculations never indicated it to be necessary to

discard more than the first 65.

We hope that the suggestion made here will allow the Gibbs sampler to be used more
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efficiently, and hence to make Bayesian image restoration feasible for larger problems. The

computer code used to carry out these calculations is available from Adrian Raftery by

electronic mail at raftery@stat.washington. edu.

3 Using morphology to locate archeological sites: The
EP algorithm

The problems of locating archeological sites in section 3 can be regarded as one of locating

and finding the boundaries of obic'xs in the image, in this case sites of previous activity. For

comparative purposes, we apply a different technique based on mathematical morphology,

known as the EP algorithm, that was originaiiy developed for locating ice floes in satellite

images (Banfield and Raftery, 1989).

The EP algorithm consists of two parts: erosion and propagation. The erosion part of the

algorithm, which identifies the potential edge elements, is a standard application of ideas

in mathematical morphology (Serra, 1982). The algorithm is iterative and operates on a

binary image consisting of objects (sites of activity) on a contrasting background. At the

first iteration, if a pixel is classified as "active" and a specified subset of its neighbors is

inactive, the pixel is "deactivated" and becomes inactive. At the second iteration, the same

operation is performed on the image resulting from the first iteration, and so on. The edge

elements consist of the pixels "deactivated" at the first iteration. The propagation part of the

EP algorithm keeps track of the site to which an edge pixel belongs by locally propagating

the information about edge elements into the interior of the object as it is eroded.

We started the EP algorithm from the naive classification given in the authors' Fig-

ure 1(a), which is, in fact, simple thresholding. The results are shown in Figure 1. They are

quite similar to those obtained from the Bayesian image restoration method, perhaps strik-

ingly so given the noisy appearance of the naive classification in the authors' Figure 1(a).

The pixels where the classifications disagree are pixels where the uncertainty is, in an' event,
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Edge pixels from the EP algorithm EP algorithm classification

Besag et. al. and EP classifications compared Besag et. al. classification
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Figure 1: The EP algorithm applied to the archeology data: (a) The edge pixels identified by
the EP algorithm; (b) The classification by the EP algorithm; (c) The EP and Bayesian image
restoration classifications superimposed; (d) The Bayesian image restoration classification.
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considerable. For almost all these pixels, the posterior probabilities in the authors' Figure 2

are well away from 0 or 1, and many of them are border pixels for which, as the authors ob-

serve, any spatial procedure is necessarily of doubtful value. Note that the EP algorithm uses

only the naive classification, and does not, unlike the Bayesian image restoration method,

use the full original data.

The EP algorithm has advantages and disadvantages compared to the Bayesian image

restoration method: it is much faster but yields less information. The EP algorithm involves

only about 10 iterations here, each of which consists only of small integer additions, while

the Bayesian image restoration method uses 15,000 iterations each of which involves one

exponentiation per pixel. Thus we estimate that the Gibbs iterations take at least 1,000

times, and perhaps 10,000 times as much CPU time as the EP iterations. On the other

hand, the Bayesian image restoration method does have the important property of providing

a statement of uncertainty in the form of posterior probabilities at each pixel.

However, we do wonder about the precise status of this statement of uncertainty. Markov

random field models such as that on which the analysis is base- tften have a substantial

probability of producing infinite one-color patches, in which case typical realizations of {p(x)}

will not resemble the true scene. This is known as the phase transition phenomenon and is

discussed, for example, by Besag (1986). One consequence is that the prior may be heavily

concentrated on uniform images, and one might expect this to bias the posterior towards

too much uniformity. We would welcome the authors' views on these points.

4 Modeling issues

4.1 Modeling the spatial dependence

In the disease mapping example, the authors model the spatial dependence using equation

(4.1). This seems sensible in the case of a spatial array that is not too dissimilar to a
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rectangular array of pixels, such as the French d6partements. As a historical footnote, the

regularity of the administrative map of France is due to Napol6on, who laid it out in the

early nineteenth century in such a way that a man on horseback could reach any part of a

d~partement in a day's ride.

However, we wonder whether the specification (4.1) would be as satisfactory for much

more irregularly spaced arrays. One example is the Standard Statistical Metropolitan Areas

(SMSAs) of the United States, where the "neighbors" are close together in the North-East,

but much further apart in the rest of the country.

An alternative but related specification has been developed in geostatistics as the basis

for the so-called "kriging" method (Journel and Huijbregts, 1978). This implements the

idea that dependence decreases with distance. The form of the dependence is described by

the semivariogram, 'y(h) = !Var[u(s) - u(s + h)), where u(s) denotes the value of u at a

location s. If the covariance function, C(h), exists, then "y(h) = C(O) - C(h). If V is the

resulting covariance matrix of the ui's, and the ui's are assumed to be jointly Gaussian, then

(ui I u-i) - N(fii, uo), where fi,= j aijuj is the best linear predictor of ui and a? is its

variance.

This may provide a more systemmatic basis for the choice of the quantities {aij}, which

play a role similar to that of the {wij} in equation (4.1). Another feature is that when, as

in the disease risk example, the data correspond to areas rather than to points, the spatial

dependence can take account of this explicitly. This is done by postulating a semivariogram

for points, as above, and then integrating over areas to provide the corresponding values for

the areas (Journel and Huijbregts, 1978). One would then proceed as before.

At first sight, it may seem that such an approach would be computationally prohibitive

for even moderate data sets, since, in principle, it requires the inversion of n matrices, each

of which is (n - 1) x (n - 1). However, if -y(h) is modeled by a function with "sill", such as
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the "Mathron", or spherical, semivariogram,

(7 213(,h, 1(1h1)31 --j<
y-(h) - - a h<a

7(h = ajhj > a,

then many of the entries in V will be zero, and this can be used to reduce the computation

involved in calculating the {aij}. Also, most of the {a:} will be close to zero, and they

could be set to zero without bad consequences, leading to an effective set of neighbors for

each pixel, not necessarily restricted to the contiguous zones. In addition, the {aij} have

to be calculated only once for each value of (iK, A) considered, remaining the same for each

iteration of the Gibbs sampler. This suggests advantage to the strategy adopted by the

authors for the archeological example, where the parameters of the prior were updated much

less frequently than the values at the individual nodes.

These are tentative and untested ideas. However, the notion that the spatial modeling

methods developed in geostatistics could be combined with the Bayesian image restoration

methods proposed in the present paper may be a potentially fruitful one.

4.2 Model uncertainty

Several modeling choices are made in the authors' examples. These include the form of

O(z), namely whether it should be proportional to z2 or to jzj, which covariates should be

included in t = AO, the way the {wij} are defined, and whether u and v should both be

present. The authors, in common with most statistical modelers, have chosen a single model

for each data set, and drawn conclusions conditionally on the selected model. This ignores

the uncertainty associated with the model selection exercise itself. Analyses conditional on

a single selected model fail to take account fully of uncertainty about structure, and so

may well underestimate the uncertainty associated with their conclusions, thus, for example,

biasing policy choices in favor of policies that rely on more certain information (Hodges,

19F 1).
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Suppose that m + 1 models M0 , Ml,... , M, are being considered. In the present context,

these might correspond, for example, to different choices of 0(-), {wi 3 and covariates. Then,

if A is a quantity of interest in the analysis, we can take account of model uncertainty quite

simply by basing inference on the unconditional posterior distribution of A,

m
p(A I Y) = E'P(A I Y, Mk)p(Mk I (1)

k=O

where p(Mk ) y) is the posterior probability of model Mk. This is a weighted average of the

posterior densities of A under each of the models individually, weighted by their posterior

probabilities. It will be well approximated by p(A I y, Mk*), i.e. by conditioning on a single

selected model Mk., only if p(Mk. I y) P 1, or if the posterior distributions of A from the

models with non-negligeable posterior probability are similar.

To calculate the posterior probabilities p(Mk I y) we note that

p(Mk I Y) oC P(y I Mk)p(Mk). (2)

In equation (2), p(Mk) is the prior probability of Mk and

P(y I Mk) = f P(Y 10/6 Mk)p(Ok I Mk)dOk, (3)

where Ok is the possibly vector parameter of Mk and P(Ok I Mk) is its prior density. In

the present context, this can be implemented by noting that x can also be included in

equation (3), yielding

P(Y I Mk) = I x, Ok, Mk)p(Ok Mk)dxdk. (4)

This can be approximated by

1 T

p(Y I Mk) E P(YIX(",Okt)Mk), (5)

where {x(), 0(9} is the result of running the Gibbs sampler to obtain a sample from the

prior distribution of (x, Ok). A different approach to finding posterior probabilities using the
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Gibbs sampler is to include a model indicator as an additional parameter (Carlin, Polson

and Stoffer, 1990).

The implementation of the suggested approach to model uncertainty using equations (1),

(2), (4) and (5) does not seem computationally prohibitive. At most, the computation is

linear in the number of models that are fully analyzed, multiplying the required CPU time

by about 2(m + 1). However, there are several possible ways of reducing this. For example,

the Gibbs sampler could be run in parallel on all the models. Also, an initial short run of

equation (5) could be used to identify those models with substantial posterior probability,

and a longer run restricted to those models then done to evaluate p(A I y) more precisely.

4.3 Improper posteriors in hierarchical Bayes modeling

In the authors' equation (4.5), the use of the obvious "non-informative" or scale-invariant

prior for x; and A, p(K, A) cx rc-IA-1, leads to an improper posterior distribution. As the

authors point out, this is a common feature of Bayesian hierarchical models in general. It

arises, for example, even in the simplest normal empirical Bayes model (Morris, 1983) where

(yj Oj, V) - N(0j, V) (6)

(OjI p,A) N(p,A) (j = 1,...N). (7)

Then with the standard vague prior, p(, V, A) cx V- 1A -1 , the posterior p(Oj I y) is improper.

The authors mention the available remedy, in their case, of banning a neighborhood of

K = A = 0, but instead use the improper prior (4.6), which is intended to approximate an

improper uniform prior, but modified to be equal to zero at K = A = 0. The use of a uniform

prior for a variance-like parameter seems somewhat unsatisfactory intuitively, as it has the

disadvantages of an improper prior, without the advantages of scale invariance. Of course,

it is not clear that this is really a serious problem in the present application.

Kahn (1990) analyzed this problem in the context of the normal empirical Bayes model
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specified by equations (6) and (7). He reparameterized the model, setting S = V + A and

T = v__-. Then S = Var(yj I p, S, T), and the prior p(, S, T) oc S - 1 leads to a properV+A"

posterior while retaining the desirable scale-invariant property of the standard prior.

By analogy, this suggests that in the present context we consider Var(yj I uj, 1, A), which

is approximately equal to (I + - + A) when K and A are small and ci is large, as here. ThisCi n,

suggests specifying the prior in terms of a + + A and r = A/o, where an overbar

denotes the average over all pixels. The natural choice is p(a, 7-) oc a - 1 , corresponding to

p(K, A) oc + + + A) -2 This is an improper prior which retains, at least roughly, the

desired scale-invariance properties, but does not exhibit the behavior near the origin that

leads to impropriety. This prior may still lead to the Markov chain defined by the Gibbs

sampler having an absorbing state, and one could multiply it by the expression in the authors'

equation (4.6) to avoid this.

4.4 Local dependence between counts

The authors' model for the disease risk example assumes that, conditionally on the true

relative risks xi, the observed numbers of cases y, are independent Poisson random variables,

arguing that this is usually reasonable when the disease is non-contagious and rare. If

the disease is contagious, however, it seems likely that the y,'s will be dependent, even

conditionally on x. Even if the disease is non-contagious, it seems possible that the yj 's may

be dependent. For example, if a disease is genetically transmitted, this could lead to spatial

clustering even when the true risk is constant over space. If such dependence is present, then

failing to take account of it seems likely to bias the estimated Xi's away from uniformity and

hence, for example, to overstate the size and significance of the effects of covariates.

In the spirit of the authors' paper, the way to take account of such dependence is to

model it explicitly. However, how to do this is not immediately obvious. The first possibility

that springs to mind is the auto-Poisson model of Besag (1974). The problem with this
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is that it can represent only negative dependence between neighboring pixels, producing a

chessboard-like pattern, which seems unsatisfactory.

We would like to suggest another possible way of representing such spatial dependence

between Poisson random variables that draws on ideas first developed in the time series

context. The mixture transition distribution (MTD) model for a stationary time series {Zt}

taking values in an arbitrary space Z is defined as follows (Raftery 1985a, 1985b; Martin

and Raftery, 1987). Suppose that (V, W,) (i = 1,... ,p) is a set of bivariate random vectors

taking values in Z x Z, with conditional densities f2 (v I w) with respect to some measure,

where the marginal distribution of Vi is the same as that of Wi for each i = 1,.. . , p. Then

the conditional density of Zt given Zt- 1 ,..., Zt-p is given by

P
p(Zn I zni,= . Z Aif,(zt I zt-i), (8)

where F Ai = 1. This can represent time series with arbitrary marginal distributions taking

values in arbitrary spaces; in the discrete-valued case it fits data well, is physically motivated

and is analogous in several ways to the standard autoregressive model. To specify a Poisson

time series model, all that is needed is a bivariate Poisson distribution such as that of Holgate

(1964) with mean p and dependence parameter C, which yields

fM(v I w) = f(v I W) = e- (A-0) -  , ( (- h (9)

h=O (v h)

When the Poisson means are constant (i.e. the c, and the xi are constant) the obvious

spatial generalization is just to replace the summation over past values in equation (8) by a

summation over the neighbors of pixel n. Then the model is specified in terms of conditional

distributions, and the Gibbs sampler machine can be set in motion as before. One way

of generalizing this to the non-stationary situation that we have actually got, where the

c and the xi are not constant, is as follows. First postulate the existence of a spatial

process {z'} defined by equations (8) and (9), corresponding to constant ci and xi, and
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let F(.) be the corresponding Poisson cumulative distribution function. Let F,(.) be the

Poisson cumulative distribution function corresponding to c, and X,. Then we model z, as

z, = F7'(F(z*)). If the expected counts are very small, then this will not be quite accurate

due to the discreteness, and an exact solution may be obtainied by allowing the dependence

of z, on z* to be stochastic.

One difficulty with this suggestion is that the conditional distributions defined in this

way do not define a valid joint distribution for the yi's, by tLe Hammersley-Clifford theorem

(Besag, 1974). However, it seems likely that any joint distribution for Poisson random

variables that does satisfy the Hammersley-Clifford theorem will not allow a sufficiently

broad range of positive dependence. The MTD model suggested here may well have the right

local conditional dependence structure, while distributions that do satisfy the Hammerslev-

Clifford theorem will often have undesirable large-scale properties as well as unsatisfactory

local properties.

Thus one may ask whether conditional distributions such as that specified by the MTD

model that do not satisfy the Hammersley-Clifford theorem might not, nevertheless, provide

useful operational procedures. Besag (1986) refers to this possibility, and we would appreciate

the authors' current views on it.
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